Working with Robotic
Sensors

In the previous chapter, we have seen the interfacing of some actuators for our
service robot. The next important section that we need to cover is about the robotic
sensors used in this robot.

We are using sensors in this robot to find the distance from an obstacle, to get
the robot odometry data, and for robotic vision and acoustics.

The sensors are ultrasonic distance sensors, or IR proximity sensors are used to
detect the obstacles and to avoid collisions. The vision sensors such as Kinect to
acquire 3D data of the environment, for visual odometry; object detection, for
collision avoidance; and audio devices such as speakers and mics, for speech
recognition and synthesis.

In this chapter, we are not including vision and audio sensors interfacing because
in the upcoming chapter we will discuss them and their interfacing in detail.

Working with ultrasonic distance sensors

One of the most important features of a mobile robot is navigation. An ideal navigation
means a robot can plan its path from its current position to the destination and can
move without any obstacles. We use ultrasonic distance sensors in this robot for
detecting objects in close proximity that can't be detected using the Kinect sensor.

A combination of Kinect and ultrasonic sound sensors provides ideal collision
avoidance for this robot.

[137]

Working with Robotic Sensors

Ultrasonic distance sensors work in the following manner. The transmitter will send
an ultrasonic sound which is not audible to human ears. After sending an ultrasonic
wave, it will wait for an echo of the transmitted wave. If there is no echo, it means
there are no obstacles in front of the robot. If the receiving sensor receives an echo, a
pulse will be generated on the receiver, and it can calculate the total time the wave
will take to travel to the object and return to the receiver sensors. If we get this time,
we can compute the distance to the obstacle using the following formula:

Speed of Sound * Time Passed /2 = Distance from Object.
Here, the speed of sound can be taken as 340 m/s.

Most of the ultrasonic range sensors have a distance range from 2 cm to 400 cm.
In this robot, we use a sensor module called HC-SR04. We can see how to interface
HC-SR04 with Tiva C LaunchPad to get the distance from the obstacles.

Interfacing HC-SR04 to Tiva C LaunchPad

The following figure is the interfacing circuit of the HC-SR04 ultrasonic sound
sensor with Tiva C LaunchPad:

Interfacing diagram of Launchpad and HC-SR04

[138]

Chapter 6

The working voltage of the ultrasonic sensor is 5 V and the input/ output of this sensor
is also 5 Volt, so we need a level shifter on the Trig and Echo pins for the interfacing
into the 3.3 V level Launchpad. In the level shifter, we need to apply high voltage, that
is, 5 Volt, and low voltage, that is, 3.3 Volt, as shown in the figure, to switch from one
level to another level. Trig and Echo pins are connected on the high voltage side of the
level shifter and the low voltage side pins are connected to Launchpad. The Trig pin
and Echo pin are connected to the 10th and 9th pins of Launchpad. After interfacing
the sensor, we can see how to program the two I/O pins.

Working of HC-SR04

The timing diagram of waveform on each pin is shown in the following diagram.

We need to apply a short 10 us pulse to the trigger input to start the ranging and then
the module will send out an eight cycle burst of ultrasound at 40 KHz and raise its
echo. The echo is a distance object that is pulse width and the range in proportion.
You can calculate the range through the time interval between sending trigger signals
and receiving echo signals using the following formula:

Range = high level time of echo pin output * velocity (340 M/S) /2.

It will be better to use a delay of 60 ms before each trigger, to avoid overlapping
between the trigger and echo:

> 10us

g = 60ms]
7 | [1

Trig input F i ﬂ
Internal signal || ’ ’ | ||||H 7

A0KHz ultrasonic pulses

Echooutput i

Width represents
distance

[139]

Working with Robotic Sensors

Interfacing code of Tiva C LaunchPad

The following Energia code for Launchpad reads values from the ultrasound sensor
and monitors the values through a serial port.

The following code defines the pins in Launchpad to handle ultrasonic echo and
trigger pins and also defines variables for the duration of the pulse and the distance
in centimeters:

const int echo = 9, Trig = 10;
long duration, cm;

The following code snippet is the setup () function. The setup () function is called
when a sketch/code starts. Use this to initialize variables, pin modes, start using
libraries, and so on. The setup function will only run once, after each power up or
reset of the Launchpad board. Inside setup (), we initialize serial communication
with a baud rate of 115200 and setup the mode of ultrasonic handling pins by calling
a function SetupUltrasonic () ;

void setup ()

{

//Init Serial port with 115200 buad rate
Serial.begin(115200) ;
SetupUltrasonic () ;

}

The following is the setup function for the ultrasonic sensor; it will configure the
Trigger pin as OUTPUT and the Echo pin as INPUT. The pinMode () function is used
to set the pin as INPUT or OUTPUT.

void SetupUltrasonic ()

{

pinMode (Trig, OUTPUT) ;
pinMode (echo, INPUT) ;

}

After creating a setup () function, which initializes and sets the initial values, the
loop () function does precisely what its name suggests, and loops consecutively,
allowing your program to change and respond. Use it to actively control the
Launchpad board.

[140]

Chapter 6

The main loop of this is in the following code. This function is an infinite loop
and calls the Update_Ultra_sonic () function to update and print the ultrasonic
readings through a serial port:

void loop ()

{
Update_Ultra_Sonic();
delay (200) ;

}

The following code is the definition of the Update_Ultra_Sonic () function.
This function will do the following operations. First, it will take the trigger pin to
the L.ow state for 2 microseconds and HIGH for 10 microseconds. After 10
microseconds, it will again return the pin to the L.ow state. This is according to the
timing diagram. We already saw that 10 ps is the trigger pulse width.

After triggering with 10 us, we have to read the time duration from the Echo pin.
The time duration is the time taken for the sound to travel from the sensor to the
object and from the object to the sensor receiver. We can read the pulse duration by
using the pulseIn () function. After getting the time duration, we can convert the
time into centimeters by using the microsecondsToCentimeters () function,

as shown in the following code:

void Update Ultra_Sonic()

{
digitalWrite (Trig, LOW) ;
delayMicroseconds (2) ;
digitalWrite(Trig, HIGH) ;
delayMicroseconds (10) ;
digitalWrite (Trig, LOW) ;

duration = pulseIn(echo, HIGH) ;
// convert the time into a distance
cm = microsecondsToCentimeters (duration) ;

//Sending through serial port
Serial.print ("distance=") ;

Serial.print ("\t");
Serial.print (cm) ;
Serial.print ("\n") ;

[141]

Working with Robotic Sensors

The following code is the conversion function from microseconds to distance in
centimeters. The speed of sound is 340 m/s, that is, 29 microseconds per centimeter.
So we get the total distance by dividing the total microseconds by 29/2:

long microsecondsToCentimeters (long microseconds)

{

return microseconds / 29 / 2;

}

After uploading the code, open the serial monitor from the Energia menu under
Tools | Serial Monitor and change the baud rate into 115200. You can see the
values from the ultrasonic sensor, like this:

[Z]

X [devfttyACMO

Distance= 28438 s
Distance= 330
Distance= 2830
Distance= 11
Distance= 11
Distance= 11
Distance= 11
Distance= 1
Distance= 12
Distance= 14
Distance= 29
Distance= 14
Distance= 13
Distance= 13 1

| Send

4 L3

B Autoscroll|Molineending | = | [115200baud |

Output of the energia serial monitor

Interfacing Tiva C LaunchPad with Python

In this section, we can see how to connect Tiva C LaunchPad with Python to receive
data from Launchpad.

The PySerial module can be used for interfacing Launchpad to Python. The detailed
documentation of PySerial and its installation procedure for Window, Linux, and OS
Xis on the following link:

http://pyserial.sourceforge.net/pyserial.html

[142]

Chapter 6

PySerial is available in the Ubuntu package manager and it can be easily installed
in Ubuntu using the following command in terminal:

$ sudo apt-get install python-serial

After installing the python-serial package, we can write a python code to
interface Launchpad. The interfacing code is given in following section.

The following code imports the python serial module and the sys module.

The serial module handles the serial ports of Launchpad and performs operations
such as reading, writing, and so on. The sys module provides access to some
variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available:

#!/usr/bin/env python
import serial
import sys

When we plug Launchpad to the computer, the device registers on the OS as a
virtual serial port. In Ubuntu, the device name looks like /dev/ttyacMx. Where x
can be a number, if there is only one device, it will probably be 0. To interact with
the Launchpad, we need to handle this device file only.

The following code will try to open the serial port /dev/ttyacMo of Launchpad
with a baud rate of 115200. If it fails, it will print unable to open serial port.

try:

ser = serial.Serial('/dev/ttyACMO',115200)
except:

print "Unable to open serial port"

The following code will read the serial data until the serial character becomes
anew line ('\n') and prints it on the terminal. If we press Ctrl + C on the keyboard,
to quit the program, it will exit by calling sys.exit (0).

while True:

try:
line = ser.readline()
print line

except:

print "Unable to read from device"
sys.exit (0)

[143]

Working with Robotic Sensors

After saving the file, change the permission of the file to executable using the
following command:

$ sudo chmod +X script_ name

$./script_name
The output of the script will look like this:

-

lentin@lentin-Aspire-4755: ~

Distance= 12
Distance=

Distance=

Working with the IR proximity sensor

Infrared sensors are another method to find obstacles and the distance from the
robot. The principle of infrared distance sensors is based on the infrared light that
is reflected from a surface when hitting an obstacle. An IR receiver will capture the
reflected light and the voltage is measured based on the amount of light received.

One of the popular IR range sensors is Sharp GP2D12, the product link is as follows:
http://www.robotshop.com/en/sharp-gp2y0a2lyk0f-ir-range-sensor.html

The following figure shows the Sharp GP2D12 sensor:

Chapter 6

The sensor sends out a beam of IR light and uses triangulation to measure the
distance. The detection range of the GP2D12 is between 10 cm and 80 cm. The beam
is 6 cm wide at a distance of 80 cm. The transmission and reflection of the IR light
sensor is illustrated in the following figure:

On the left of the sensor is an IR transmitter, which continuously sends IR radiation,
after hitting into some objects, the IR light will reflect and it will be received by the
IR receiver. The interfacing circuit of the IR sensor is shown here:

PIN 18

M1

GND

w1z mane | e

[145]

Working with Robotic Sensors

The analog out pin Vo can be connected to the ADC pin of Launchpad.

The interfacing code of the Sharp distance sensor with the Tiva C Launchpad

is given further in this section. In this code, we select the 18th pin of Launchpad and
set it to the ADC mode and read the voltage levels from the Sharp distance sensor.
The range equation of the GP2D12 IR sensor is given as follows:

Range = (6787 / (Volt - 3)) - 4
Here, Volt is the analog voltage value from ADC of the Vout pin.

In this first section of the code, we set the 18th pin of Tiva C LaunchPad as the input
pin and start a serial communication at a baud rate of 115200:

int IR_SENSOR = 18; // Sensor is connected to the analog A3
int intSensorResult = 0; //Sensor result
float fltSensorCalc 0; //Calculated value

void setup ()

{

Serial.begin(115200); // Setup communication with computer
to present results serial monitor

}

In the following section of code, the controller continuously reads the analog pin and
converts it to the distance value in centimeters:

void loop ()

{

// read the value from the ir sensor
intSensorResult = analogRead(IR_SENSOR); //Get sensor value

//Calculate distance in cm according to the range equation

fltSensorCalc = (6787.0 / (intSensorResult - 3.0)) - 4.0;
Serial.print (fltSensorCalc); //Send distance to computer
Serial.println(" cm"); //Add cm to result

delay (200); //Wait

}

[146]

Chapter 6

This is the basic code to interface a Sharp distance sensor. There are some drawbacks
with the IR sensors. Some of them are as follows:

* We can't use them in direct or indirect sunlight, so it's difficult to use them in
an outdoor robot

* They may not work if an object is reflective

* The range equation only works within the range

In the next section, we can discuss IMU and its interfacing with Tiva C LaunchPad.

IMU can give the odometry data and it can be used as the input to navigation
algorithms.

Working with Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is an electronic device that measures
velocity, orientation, and gravitational forces using a combination of accelerometers,
gyroscopes, and magnetometers. An IMU has a lot of applications in robotics; some
of the applications are in balancing of Unmanned Aerial Vehicles (UAVs) and
robot navigation.

In this section, we discuss the role of IMU in mobile robot navigation and some
of the latest IMUs on the market and its interfacing with Launchpad.

Inertial Navigation

An IMU provides acceleration and orientation relative to inertial space, if you

know the initial position, velocity, and orientation, you can calculate the velocity by
integrating the sensed acceleration and the second integration gives the position. To
get the correct direction of the robot, the orientation of the robot is required; this can
be obtained by integrating sensed angular velocity from gyroscope.

[147]

Working with Robotic Sensors

The following figure illustrates an inertial navigation system, which will convert
IMU values to odometric data:

| Attitude, R, or rolipitchlyaw

Angular _..B

i velocity, ~ 1B B I

: | Velocity, Vg

%Specfﬁc fﬂ e

i force, J1B | i Horizontal . or longitude/

i i position, R latitude
Depth, z

The values we get from the IMU are converted into navigational information using
navigation equations and feeding into estimation filters such as the Kalman filter.
The Kalman filter is an algorithm that estimates the state of a system from the
measured data (http://en.wikipedia.org/wiki/Kalman_ filter). The data from
Inertial Navigation System (INS) will have some drift because of the error from
the accelerometer and gyroscope. To limit the drift, an INS is usually aided by other
sensors that provide direct measurements of the integrated quantities. Based on the
measurements and sensor error models, the Kalman filter estimates errors in the
navigation equations and all the colored sensors' errors. The following figure shows
a diagram of an aided inertial navigation system using the Kalman filter:

Horizontal
position

[148]

Chapter 6

Along with the motor encoders, the value from the IMU can be taken as the
odometer value and it can be used for dead reckoning, the process of finding the
current position of a moving object by using a previously determined position.

In the next section, we are going to see one of the most popular IMUs from
InvenSense called MPU 6050.

Interfacing MPU 6050 with Tiva C LaunchPad

The MPU-6000/ MPU-6050 family of parts are the world's first and only 6-axis
motion tracking devices designed for the low power, low cost, and high performance
requirements of smart phones, tablets, wearable sensors, and robotics.

The MPU-6000/6050 devices combine a 3-axis gyroscope and 3-axis accelerometer
on the silicon die together with an onboard digital motion processor capable of
processing complex 9-axis motion fusion algorithms. The following figure shows
the system diagram of MPU 6050 and breakout of MPU 6050:

MPU-6000/ 5 :
2 i Application
3-Axis Compass M:;E 5222 2 DBd Processor

12C or SPI

FIFO

The breakout board of MPU 6050 is shown in the following figure and it can be
purchased from the following link:

https://www.sparkfun.com/products/110286

| ®ucc -

| @ono
OSCL M
@soA

@xon =, =

: Sgmy T uEl
‘@XCL ﬁﬁ- .’;‘!‘z;ﬁ _
 (£)ADO \}YQ
| ©1INT 5

[149]

Working with Robotic Sensors

The connection from Launchpad to MPU 6050 is given in the following table.
The remaining pins can be left disconnected:

Launchpad pins MPU6050 pins
+3.3V VCC/VDD
GND GND

PDO SCL

PD1 SDA

The following figure shows the interfacing diagram of MPU 6050 and Tiva C
Launchpad:

The MPU 6050 and Launchpad communicate using the I2C protocol, the supply
voltage is 3.3 Volt and it is taken from Launchpad.

Setting up the MPU 6050 library in Energia

The interfacing code of Energia is discussed in this section. The interfacing code
uses the https://github.com/jrowberg/i2cdevlib/zipball/master library
for interfacing MPU 6050.

[150]

Chapter 6

Download the ZIP file from the preceding link and navigate to Preference from

File | Preference in Energia, as shown in the following screenshot:

=
Py

Preferences

Sketchbook location:
[/home/lentin/sketchbook

Editor Font: | Monospaced Lz

Editor Font size: |12

Shewverbese output during: || compilation || upload

[& Verify cade after upload

[Use external editor

[Check for updates on startup

& Update sketch files tonew extension on save ((pde -> ino)

[Include debug information in the output ELF file

More preferences can be edited directly in the file
/home/lentin.energia/preferences.txt
(edit only when Eneragia is not running)

OK

Go to Sketchbook location under Preferences, as seen in the preceding screenshot,
and create a folder called 1ibraries. Extract the files inside the Arduino folder
inside the ZIP file to the sketchbook/libraries location. The Arduino packages in
this repository are also compatible with Launchpad. The extracted files contain the
I2Cdev, Wire, and MPU6050 packages that are required for the interfacing of the MPU
6050 sensor. There are other sensors packages that are present in the 1ibraries

folder but we are not using them now.

The preceding procedure is done in Ubuntu, but it is the same for Windows and

Mac OS X.

[151]

Working with Robotic Sensors

Interfacing code of Energia

This code is used to read the raw value from MPU 6050 to Launchpad, it uses a
MPU 6050 third-party library that is compatible with Energia IDE. The following
are the explanations of each block of the code.

In this first section of code, we include the necessary headers for interfacing MPU
6050 to Launchpad such as 12¢, Wwire and the MPU6050 library and create an object
of MPU6050 with the name accelgyro. The MPU6050 . h library contains a class
named MPU6050 to send and receive data to and from the sensor:

#include "Wire.h"

#include "I2Cdev.h"
#include "MPU6050.h"

MPU6050 accelgyro;

In the following section, we start the I2C and serial communication to communicate
with MPU 6050 and print sensor values through the serial port. The serial
communication baud rate is 115200 and Setup MPU6050 () is the custom function
to initialize the MPU 6050 communication:

void setup ()

{

//Init Serial port with 115200 buad rate
Serial .begin(115200) ;
Setup_MPU6050 () ;

}

The following section is the definition of the setup_MPU6050 () function. The wire
library allows you to communicate with the 12C devices. MPU 6050 can communicate
using I2C. The wire.begin () function will start the I2C communication between
MPU 6050 and Launchpad; also, it will initialize the MPU 6050 device using the
initialize () method defined in the MPU6050 class. If everything is successful, it
will print connection successful, otherwise it will print connection failed:

void Setup MPU6050 ()

{

Wire.begin() ;

// initialize device

[152]

Chapter 6

Serial.println("Initializing I2C devices...");
accelgyro.initialize() ;

// verify connection
Serial.println("Testing device connections...");

Serial.println (accelgyro.testConnection() ? "MPU6050 connection
"MPU6050 connection failed");

successful"

}

The following code is the 1oop () function, which continuously reads the sensor
value and prints its values through the serial port: The Update_MPU6050 () custom
function is responsible for printing the updated value from MPU 6050:

void loop ()

{

//Update MPU 6050
Update MPU6050 () ;

}

The definition of Update MPU6050 () is given as follows. It declares six variables to
handle the accelerometer and gyroscope value in 3-axis. The getMotionsé () function
in the MPU 6050 class is responsible for reading the new values from the sensor.
After reading, it will print via the serial port:

void Update MPU6050 ()

{

int16_t

ax, ay, az;

intlé_t gx, gy, 9z;

// read raw accel/gyro measurements from device
accelgyro.getMotioné (&ax, &ay, &az, &gx, &gy, &gz);

// display tab-separated accel/gyro x/y/z values

Serial

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

Serial

.print ("i") ;Serial
print (ax); Serial
print (ay); Serial
print (az); Serial
print (gx); Serial
print (gy); Serial
println(gz) ;

.print ("\n") ;

.print ("\t") ;
.print ("\t");
.print ("\t");
.print ("\t");
.print ("\t");
.print ("\t");

[153]

Working with Robotic Sensors

The output from the serial monitor is shown here:

-,

&5 @ fdevfttyACMO
[Send

10912 12216 -4060 137 12 57

10872 -12180 -3876 118 76 -54

10976 12184 3756 100 8 -33

10952 12184 3808 132 -28 59

10848 12172 3876 141 3 93

10900 -12180 3995 -134 -13 -49

11000 12176 -3972 107 47 -85 |
i 11004
& Autoscroll MNolineending | » | |[115200baud | =

We can read these values using the python code that we used for ultrasonic.
The following is the screenshot of the terminal when we run the python script:

lentin@lentin-Aspire-4755: ~

10904

10964

11008

-12140

-12156

-12152

-3864

-3940

-3780

[154]

Chapter 6

Interfacing MPU 6050 to Launchpad with
the DMP support using Energia

In this section, we will see the interfacing code of MPU 6050 by activating DMP,
which can give us direct orientation values in quaternion or yaw, pitch, and roll.
This value can be directly applied to our robotic application too.

The following section of code imports all the necessary header files to interface and
create an MPU6050 object like the previous code:

#include "Wire.h"
#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"

//Creating MPU6050 Object
MPU6050 accelgyro (0x68) ;

The following code initializes and declares variables to handle DMP:

//DMP options
//Set true if DMP initialization was successful
bool dmpReady = false;

//Holds actual interrupt status byte from MPU
uint8_t mpulntStatus;

//return status after each device operation
uint8_t devStatus;

//Expected DMP packet size
uintlé6_t packetSize;

//count of all bytes currently in FIFO
uintlé6_t fifoCount;

//FIFO storate buffer
uint8_t fifoBuffer[64];

//Output format will be in quaternion
#define OUT PUT_READABLE_QUATERN ION

[155]

Working with Robotic Sensors

The following code declares various variables to handle orientation variables:

//quaternion variable
Quaternion q;

The following function is an interrupt service routine, which is called when MPU
6050 INT pin generates an interrupt:

//Interrupt detection routine for DMP handling
volatile bool mpulnterrupt = false;
// indicates whether MPU interrupt pin has gone high
void dmpDataReady () {

mpulnterrupt = true;

}

The following code is the definition of the setup () function. It initializes the serial
port with a baud rate of 115200 and calls the setup_MpPU6050 () function:

void setup ()

{

//Init Serial port with 115200 buad rate
Serial.begin(115200) ;
Setup_MPU6050();

}

The following code is the definition of the setup_MPU6050 () function. It will
initialize MPU 6050 and checks whether it's initialized or not. If it's initialized,
it will initialize DMP by calling the setup_MPU6050_DMP () function:

void Setup MPU6050 ()

{
Wire.begin() ;
// initialize device
Serial.println("Initializing I2C devices...");
accelgyro.initialize() ;

// verify connection
Serial.println("Testing device connections...");

Serial.println(accelgyro.testConnection() ?
"MPU6050 connection successful" : "MPU6050
connection failed");

//Initialize DMP in MPU 6050
Setup MPU6050_ DMP () ;

[156]

Chapter 6

The following code is the definition of the Setup_MPU6050_DMP () function.

It initializes DMP and sets offset in three axis. If DMP is initialized, it will start
functioning and configure the PF_0/pPUsSH2 pin as an interrupt. When the data is
ready on the MPU 6050 buffer, an interrupt will be generated, which will read
values from the bus:

//Setup MPU 6050 DMP
void Setup_ MPU6050_DMP ()

{

//DMP Initialization
devStatus = accelgyro.dmpInitialize();
accelgyro.setXGyroOffset (220) ;
accelgyro.setXGyroOffset (76) ;
accelgyro.setXGyroOffset (-85) ;
accelgyro.setXGyroOffset (1788) ;
if (devStatus == 0)

accelgyro.setDMPEnabled (true) ;

pinMode (PUSH2, INPUT_PULLUP) ;

attachInterrupt (PUSH2, dmpDataReady, RISING) ;
mpulntStatus = accelgyro.getIntStatus() ;
dmpReady = true;

packetSize = accelgyro.dmpGetFIFOPacketSize () ;

else{

//Do nothing

’

}

The following code is the definition the of the loop () function. It will call
Update_MPU6050 () , which will read buffer values and print it on the serial terminal:

void loop ()

{

//Update MPU 6050
Update_MPU6050 () ;

[157]

Working with Robotic Sensors

This is the definition of Update_MPU6050 () , which will call the
Update MPU6050_ DMP () function:

void Update MPU6050 ()

{

Update MPU6050_DMP () ;

}

The following function reads from the FIFO register of MPU 6050 and the
quaternion value gets printed on the serial terminal:

//Update MPU6050 DMP functions
void Update MPU6050_DMP ()

{

//DMP Processing
if (!dmpReady) return;
while (!mpulnterrupt && fifoCount < packetSize)

{

mpulnterrupt false;

mpulntStatus = accelgyro.getIntStatus() ;

//get current FIFO count
fifoCount = accelgyro.getFIFOCount () ;

if ((mpuIntStatus & 0x10) || fifoCount > 512) ({
// reset so we can continue cleanly
accelgyro.resetFIFO() ;

else if (mpuIntStatus & 0x02) {
// wait for correct available data length,
should be a VERY short wait

while (fifoCount < packetSize) fifoCount =
accelgyro.getFIFOCount () ;

// read a packet from FIFO
accelgyro.getFIFOBytes (fifoBuffer, packetSize);

[158]

Chapter 6

// track FIFO count here in case there is > 1
packet available

// (this lets us immediately read more without
waiting for an interrupt)
fifoCount -= packetSize;

#ifdef OUTPUT READABLE QUATERNION

// display quaternion values in easy matrix form: w x y z
accelgyro.dmpGetQuaternion (&g, fifoBuffer) ;

Serial.print ("i") ;Serial.print ("\t");

(
Serial.print(g.x); Serial.print("\t");
Serial.print(g.y); Serial.print("\t");
Serial.print(g.z); Serial.print("\t");
Serial.print (q.w)

(l

Serial.print ("\n") ;

#endif

}

The output from the serial monitor is shown in the following screenshot. The serial
monitor shows the quaternion values of x, y, z, and w starting with an "i" character:

JdevfttyACMO

l I_Send:
i -0.56 -0.07 0,49 -0.67 |
i -0.56 -0.07 0.49 -0.67

i -0.586 -0.07 0,49 -0.67

i -0.56 -0,07 0.449 -0.87

i -0.56 -0.07 0.49 -0.67

i -0.56 -0.07 0,489 -0.67

i -0.56 -0.07 0,448 -0.87

i -0.56 -0.07 0,49 -0.57

i -0.56 -0.07 0,49 -0.67

i -0.56 -0.07 0,44 -0.67

i -0.56 -0.07 0.49 -0.67

i -0.56 -0,07 0.449 -0.87

i -0.56 -0.07 0.49 -0.67

i -0.56 -0.07 0,49 -0.67 []
i -0.56 0,07 0,49 -0.67 £
B Autoscroll Moline ending | = | |115200 baudI -

[159]

Working with Robotic Sensors

We can also use the Python script to view these values. The output of the Python
script is shown in the following screenshot:

-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56
-0.56

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
75
i
i
i
i
i
i
'i

In the next chapters, we will see some of the vision and audio sensors that can be
used on this robot and its interfacing with Python.

Questions

1. What are ultrasonic sensors and how do they work?

How do you calculate distance from the ultrasonic sensor?
What is the IR proximity sensor and how does it work?
How do you calculate distance from the IR sensor?

What is IMU and how do you get the odometric data?
What is the Aided Inertial Navigation system?

What are the main features of MPU 6050?

N ST PN

[160]

Chapter 6

Summary

In this chapter, we have seen some robotic sensors, which can be used in our robot.
The sensors we discussed are ultrasonic distance sensors, IR proximity sensors, and
IMUs. These three sensors help in the navigation of the robot. We also discussed
the basic code to interface these sensors to Tiva C LaunchPad. We will see more on
vision and audio sensors interfacing using Python in the next chapter.

[161]

