Chapter 1

[) ® /dev/cu.usbmodem1411 (Arduino Lecnardo)
Send

Humidity: 39.50 % Temperature: 24.50 *C Heat index: 24.04 *C
Humidity: 39.50 % Temperature: 24.50 *C Heat index: 24.04 *C
Humidity: 39.60 % Temperature: 24.50 *C Heat index: 24.04 *C
Humidity: 39.60 % Temperature: 24.50 *C Heat index: 24.04 *C
Humidity: 39.50 % Temperature: 24.40 *C Heat index: 23.93 *C
Humidity: 39.40 % Temperature: 24.40 *C Heat index: 23.92 *C
Humidity: 39.30 % Temperature: 24.40 *C Heat index: 23.92 *C
Humidity: 39.30 % Temperature: 24.40 *C Heat index: 23.92 *C
Humidity: 39.70 % Temperature: 24.40 *C Heat index: 23.93 *C
Humidity: 39.70 % Temperature: 24.40 *C Heat index: 23.93 *C
Autoscroll Both NL & CR d 9600 baud d

How does it work?

In the setup () function, we initialize the DHT module by calling dht .begin ().
To read temperature and humidity, you can use dht . readTemperature ()

and dht . readHumidity (). You also can get a heat index using the dht .
computeHeatIndex () function.

Sensing and actuating on Raspberry Pi
devices

Raspberry Pi board is one of boards used for testing experiments in this book. In
this section, we use Raspberry Pi to sense and actuate with external devices. I use a
Raspberry Pi 3 board for testing.

Setting up

Before you use a Raspberry Pi board, you need to set up an OS on the board. OS
software can be deployed on a microSD card. It's recommended to use an 8-GB
microSD card . There's a lot of OS software you can use on a Raspberry Pi board.
You can check it out at https://www.raspberrypi.org/downloads/.

[31]

Making Your IoT Project Smart

For testing purposes, I use Raspbian, https://www.raspberrypi.org/downloads/
raspbian/, as the OS on my Raspberry Pi board. Raspbian is an operating system,
based on Debian, optimized for Raspberry Pi. Follow the installation guidelines at
https://www.raspberrypi.org/documentation/installation/installing-
images/README.md. Raspbian is just one OS for Raspberry Pi OS. You can try other
Raspberry Pi OSes at https://www.raspberrypi.org/downloads/.

Accessing Raspberry Pi GPIO

If you use the latest version of Raspbian (Jessie or later), wiringPi module,
http://wiringpi.com, is already installed for you. You can verify your
wiringPi version on Raspberry Pi Terminal using the following command:

$ gpio -v

You should see your wiringPi module version. A sample of the program output can
be seen in the following screenshot:

® @ Documents — pi@raspberrypi: ~ — ssh pi@192.168.0.12 — 80x17

pi@raspberrypi:~ $ gpio -v

gpio version: 2.32

Copyright (c) 2012-2015 Gordon Henderson

This is free software with ABSOLUTELY NO WARRANTY.
For details type: gpio -warranty

Raspberry Pi Details:
Type: Pi 3, Revision: @2, Memory: 1024MB, Maker: Sony
* Device tree is enabled.
* This Raspberry Pi supports user-level GPIO access.
-> See the man-page for more details
-> ie. export WIRINGPI_GPIOMEM=1
pi@raspberrypi:~ $

Furthermore, you can verify the Raspberry GPIO layout using the
following command:

$ gpio - readall

[32]

Chapter 1

This command will display the Raspberry Pi layout. It can detect your Raspberry Pi
model. A sample of the program output for my board, Raspberry Pi 3, can be seen in
the following screenshot:

@ [Documents — pi@raspberrypi: ~ — ssh pi@192.168.0.12 — 80x28

pi@raspberrypi:~ % gpio readall
+ + + + + Pi 3 + + + + +
| BCM | wPi | Name | Mode | V | Physical | V | Mode | Name | wPi | BCM |
I I I 3.3v | I R T I | 5v I I I
| 2| 8| SDA.1 | IN| 1] 3 []4 | I | 5V I I I
| 3] 9| sci| IN|1]| 5([[6 | | | ov | | | | | |
| 4 | 7 | GPIO. 7 | IN |21] 7 1]]8 | 1| ALTS | TxD | 15 | 14 |
| | | ov | | | 9]| 10 | 1 | ALTS | RxD | 16 | 15 |
| 17 | @ | GPIO. @ | IN | 8 | 11 || 12 | @ | IN | GPIO. 1 | 1 | 18 |
| 27 | 2 | GPIO. 2 | IN | 8 | 13 || 14 | | | @v | | |
| 22 | 3 | GPIO. 3 | IN | @ | 15 || 16 | @ | IN | GPIO. 4 | 4 | 23 |
| | | 3.3v | | | 17 || 18 | @ | IN | GPIO. 5 | 5 | 24 |
| 1@ | 12 | MOSI | IN | @ | 19 || 20 | | | v | | |
| 9 | 13 | MISO | IN | @ | 21 || 22 | @ | IN | GPIO. 6 | 6 | 25 |
| 11 | 14 | SCLK | IN | @ | 23 || 24 | 1| IN | CE® | 1@ | 8 |
| | | ov | | | 25 || 26 | 1 | IN | CE1 | 11 | 7 |
| 0| 30 | SDA.Q | IN | 1] 27 || 28] 1 | IN | SCL.9@ | 31 | 1 |
| 5| 21 | GPIO0.21 | IN | 1] 29 || 30 | | | v | | |
| 6 | 22 | GPI0.22 | IN | 1] 31 || 32| @ | IN | GPIO.26 | 26 | 12 |
| 13 | 23 | GPID.23 | IN | @ | 33 || 34 | | | v | | |
| 19 | 24 | GPI0.24 | IN | @ | 35 |] 36 | @ | IN | GPIO.27 | 27 | 16 |
| 26 | 25 | GPIOD.25 | IN | @ | 37 || 38 | @ | IN | GPIOD.28 | 28 | 20 |
| | | ov | | | 39 || 40 | @ | IN | GPI0O.29 | 29 | 21 |
| BCM | wPi | Name | Mode | V | Physical | V | Mode | Name | wPi | BCM |
t t t t t t Pi 3 t t t t t t

pi@raspberrypi:~ $

For Raspberry Pi GPIO development, the latest Raspbian also has the RPi.GPIO
library already installed —https://pypi.python.org/pypi/RPi.GPIO, for Python,
so we can use it directly now.

[33]

Making Your IoT Project Smart

To test Raspberry Pi GPIO, we put an LED on GPIO11 (BCM 17). You can see the
wiring in the following figure:

Raspberry Pi 3 Model Bv1.2
Raspberry Pi 2015

HDMI
(T

NENENNENNNNEEN]
(Y¥3WYD) ISD
ETHERNET

fritzing

Now you can write a Python program with your own editor. Write the
following program:

import RPi.GPIO as GPIO
import time

led _pin = 17
GPIO.setmode (GPIO.BCM)
GPIO.setup(led pin, GPIO.OUT)

[34]

Chapter 1

try:
while 1:

print ("turn on led")
GPIO.output (led pin, GPIO.HIGH)
time.sleep(2)
print ("turn off led")
GPIO.output (led pin, GPIO.LOW)
time.sleep(2)

except KeyboardInterrupt:
GPIO.output (led pin, GPIO.LOW)
GPIO.cleanup ()

print ("done")
The following is an explanation of the code:

* We set GPIO type using GPIO.setmode (GPIO.BCM). [used the GP10.BCM
mode. In GPIO BCM, you should see GPIO values on the BCM column
from the GPIO layout.

* We defined GPIO, which will be used by calling GP10.setup () as the
output mode.

* To set digital output, we can call GPI0.output (). GPIO.HIGH is used to send
1 to the digital output. Otherwise, GP10.LOW is used for sending 0 to the
digital output.

Save this program into a file called cho1_led.py.

Now you can run the program by typing the following command on your Raspberry
Pi Terminal.

$ sudo python ch0l led.py

We execute the program using sudo, due to security permissions. To access the
Raspberry Pi hardware I/O, we need local administrator privileges.

[35]

Making Your IoT Project Smart

You should see a blinking LED and also get a response from the program. A sample
of the program output can be seen in the following screenshot:

® [] Documents — pi@raspberrypi: ~/Documents/book — ssh pi@192.168.0.12 — 8...

pi@raspberrypi:~ $ cd Documents/book/
pi@raspberrypi:~/Documents/book $ python ch@l_led.py
turn on led

turn off led

turn on led

turn off led

turn on led

turn off led

turn on led

turn off led

turn on led

turn off led

turn on led

Sensing through sensor devices

In this section, we will explore how to sense from Raspberry Pi. We use DHT-22 to
collect temperature and humidity readings on its environment.

To access DHT-22 using Python, we use the Adafruit Python DHT Sensor library.
You can review this module at https://github.com/adafruit/Adafruit Python
DHT.

You need required libraries to build Adafruit Python DHT Sensor library. Type the
following commands in your Raspberry Pi Terminal:

$ sudo apt-get update
$ sudo apt-get install build-essential python-dev

Now you can download and install the Adafruit Python DHT Sensor library:

$ git clone https://github.com/adafruit/Adafruit Python DHT
$ cd Adafruit Python DHT/
$ sudo python setup.py install

[36]

Chapter 1

If finished, we can start to build our wiring. Connect the DHT-22 module to the
following connections:
* DHT-22 pin 1 (VDD) is connected to the 3.3V pin on your Raspberry Pi

e DHT-22 pin 2 (SIG) is connected to the GPIO23 (see the BCM column) pin on
your Raspberry Pi

e DHT-22 pin 4 (GND) is connected to the GND pin on your Raspberry Pi

The complete wiring is shown in the following figure:

HDHI
LTIV

ETHERNET

-
“
4
-
=
=
m
-
k>

fritzing

The next step is to write a Python program. You can write the following code:

import Adafruit_ DHT
import time

sensor = Adafruit_ DHT.DHT22

[37]

Making Your IoT Project Smart

DHT22 pin on Raspberry Pi
pin = 23

try:
while 1:
print ("reading DHT22...")
humidity, temperature = Adafruit DHT.read retry(sensor, pin)

if humidity is not None and temperature is not None:
print ('Temp={0:0.1£}*C Humidity={1:0.1£}%"'.
format (temperature, humidity))

time.sleep(2)

except KeyboardInterrupt:
print ("exit")

print ("done")

Save this program into a file called cho1_dht22.py. Then, you can run this file on
your Raspberry Pi Terminal. Type the following command:

$ sudo python ch0l dht22.py

A sample of the program output can be seen in the following screenshot:

O] @ Documents — pi@raspberrypi: ~/Documents/book — ssh pi@192.168.0.12 — 8...

pi@raspberrypii~/Documents/book $ sudo python ch@l_dht22.py
reading DHT22...

Temp=30.2%C Humidity=77.6%
reading DHT22...

Temp=30.2%C Humidity=76.0%
reading DHT22...

Temp=30.1%C Humidity=76.0%
reading DHT22...

Temp=30.1%C Humidity=76.0%
reading DHT22...

Temp=30.2%C Humidity=76.1%
reading DHT22...

~Cexit

done
pi@raspberrypi:~/Documents/book $

[38]

Chapter 1

How does it work?

First, we set our DHT module type by calling the Adafruit_DHT.DHT22 object. Set
which DHT-22 pin is attached to your Raspberry Pi board. In this case, I use GP1I023
(BCM).

To obtain temperature and humidity sensor data, we call Adafruit_DHT.read_
retry (sensor, pin).To make sure the returning values are not NULL, we validate
them using conditional-if.

Building a smart temperature controller
for your room

To control your room's temperature, we can build a smart temperature controller. In
this case, we use a PID (proportional-integral-derivative) controller. When you set
a certain temperature, a PID controller will change the temperature by turning either
cooler or hotter. A PID controller program is developed using Python, which runs on
the Raspberry Pi board.

Assume cooler and heater machines are connected via a relay. We can activate cooler
and heater machine by sending HIGH signal on a relay.

Let's build!

Introducing PID controller

PID control is the most common control algorithm widely used in industry,
and has been universally accepted in industrial control. The basic idea behind a
PID controller is to read a sensor, then compute the desired actuator output by
calculating proportional, integral, and derivative responses and summing those
three components to compute the output.

[39]

Making Your IoT Project Smart

An example design of a general PID controller is depicted in the following figure:

2] Kpe(t)

Output

setpoint i Z e

> I Kl-fte(r)dt \Z\ » Plant/Process
0
— //

T

Furthermore, a PID controller formula can be defined as follows:

' ' ‘ de(t
u(t) = h’pe{_t) + f\'l.f e(t)dr + K, d’i]
0

K, K, K, represent the coefficients for the proportional, integral, and derivative.
Tﬁese parameters are non-negative values. The variable e represents the tracking
error, the difference between the desired input value 7, and the actual output y.
This error signal e will be sent to the PID controller.

Implementing PID controller in Python

In this section, we will build a Python application to implement the PID controller.
In general, our program flowchart can be described by the following figure:

[40]

Chapter 1

[Initialize data for PID

r

A

Simulation for total_sampling

;

f Perform updated PID values]

Get PID output
.

Change PID current value J

v

[Add PID setter and PID output to a list]

.

[Draw the data from PID setter and]
output

We should not build a PID library from scratch. You can translate PID controller
formula into Python code easily. For implementation, I use the PID class from
https://github.com/ivmech/ivPID. The following is the content of the
PID.py file:

import time

class PID:
"nnpID Controller

def init (self, P=0.2, I=0.0, D=0.0):

self .Kp = P
self.Ki =
self.Kd

g H

self.sample time = 0.00
self.current time = time.time()

[41]

Making Your IoT Project Smart

self.last time = self.current time
self.clear()
def clear(self):

"m"nClears PID computations and coefficients"""
self.SetPoint = 0.0

self.PTerm = 0.0
self.ITerm = 0.0
self.DTerm = 0.0
self.last error = 0.0

Windup Guard
self.int error = 0.0
self.windup guard = 20.0

self.output = 0.0

def update(self, feedback value):
"""Calculates PID value for given reference feedback

math: :
u(t) = K p e(t) + K i \int _{0}"{t} e(t)dt + K 4 {de}/{dt}

figure:: images/pid 1.png
:align: center

Test PID with Kp=1.2, Ki=1l, Kd=0.001 (test pid.py)

error = self.SetPoint - feedback value
self.current time = time.time()
delta time = self.current time - self.last time

delta error = error - self.last error

if (delta time >= self.sample time):
self.PTerm = self.Kp * error
self .ITerm += error * delta time

if (self.ITerm < -self.windup guard) :
self .ITerm = -self.windup guard
elif (self.ITerm > self.windup guard) :

[42]

Chapter 1

self .ITerm = self.windup guard

self .DTerm = 0.0
if delta time > 0:
self.DTerm = delta error / delta time

Remember last time and last error for next calculation
self.last time = self.current time
self.last error = error

self.output = self.PTerm + (self.Ki * self.ITerm) + (self.
Kd * self.DTerm)

def setKp(self, proportional gain) :
"""Determines how aggressively the PID reacts to the current
error with setting Proportional Gain"""
self .Kp = proportional gain

def setKi(self, integral gain):
"""Determines how aggressively the PID reacts to the current
error with setting Integral Gain"""
self .Ki = integral gain

def setKd(self, derivative gain):
"""Determines how aggressively the PID reacts to the current
error with setting Derivative Gain"""
self .Kd = derivative gain

def setWindup (self, windup) :

""rITntegral windup, also known as integrator windup or reset

windup,
refers to the situation in a PID feedback controller where
a large change in setpoint occurs (say a positive change)
and the integral terms accumulates a significant error
during the rise (windup), thus overshooting and continuing
to increase as this accumulated error is unwound
(offset by errors in the other direction) .
The specific problem is the excess overshooting.

self.windup guard = windup

def setSampleTime (self, sample time) :
"nnpTID that should be updated at a regular interval.
Based on a pre-determined sampe time, the PID decides if it
should compute or return immediately.

self.sample time = sample time

[43]

Making Your IoT Project Smart

For testing purposes, we create a simple program for simulation. We need required
libraries such as numpy, scipy, pandas, patsy, and matplotlib libraries. First, you
should install python-dev for Python development. Type the following commands
in your Raspberry Pi Terminal:

$ sudo apt-get update

$ sudo apt-get install python-dev

When done, you can install numpy, scipy, pandas, and patsy libraries. Open your
Raspberry Pi Terminal and type the following commands:

$ sudo apt-get install python-scipy
$ pip install numpy scipy pandas patsy

The last step is to install the matplotlib library from source code. Type the following
commands on your Raspberry Pi Terminal:

$ git clone https://github.com/matplotlib/matplotlib

$ cd matplotlib

$ python setup.py build

$ sudo python setup.py install

Once the required libraries are installed, we can test our PID.py file. Type the
following program:

import matplotlib
matplotlib.use ('Agg')

import PID

import time

import matplotlib.pyplot as plt
import numpy as np

from scipy.interpolate import spline

O H o
It
o R K

.001
pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime (0.01)

[44]

Chapter 1

total sampling = 100
feedback = 0

feedback list = []
time list = []
setpoint list = []

print ("simulating....")
for i in range(l, total sampling):
pid.update (feedback)
output = pid.output
if pid.SetPoint > O0:
feedback += (output - (1 / 1))

if 20 < 1 < 60:
pid.SetPoint

I
[y

if 60 <= i < 80:
pid.SetPoint = 0.5

if 1 >= 80:
pid.SetPoint = 1.3

time.sleep(0.02)

feedback list.append (feedback)
setpoint list.append(pid.SetPoint)
time list.append (i)

time sm = np.array(time list)
time_smooth = np.linspace(time sm.min(), time sm.max(), 300)
feedback smooth = spline(time list, feedback list, time smooth)

figl = plt.gcf()
figl.subplots adjust (bottom=0.15)

plt.plot (time smooth, feedback smooth, color='red')
plt.plot(time list, setpoint list, color='blue')

plt.x1im((0, total sampling))

plt.ylim((min(feedback list) - 0.5, max(feedback list) + 0.5))
plt.xlabel ('time (s) ')

plt.ylabel ('PID (PV)')

[45]

Making Your IoT Project Smart

plt.title('TEST PID')

plt.grid(True)
print ("saving...")
figl.savefig('result.png', dpi=100)

Save this program into a file called test_pid.py. Then, run this program.
$ python test pid.py

This program will generate result .png as a result of the PID process. A sample of
the output form, result.png, is shown in the following figure. You can see that the
blue line represents desired values and the red line is an output of PID:

TEST PID

2 U“
(=) ;i
E .

05|

0.0 d

05 | ; | ;
0 20 40 60 80 100
time (s)

[46]

Chapter 1

How does it work?

First, we define our PID parameters, as follows:

P=1.4

I =1

D = 0.001

pid = PID.PID(P, I, D)

pid.SetPoint = 0.0
pid.setSampleTime (0.01)

total sampling = 100
feedback = 0

feedback list = []
time list = []
setpoint list = []

After that, we compute the PID value during sampling time. In this case, we set the

desired output value as follows:

* Desired output 1 for sampling from 20 to 60
* Desired output 0.5 for sampling from 60 to 80

* Desired output 1.3 for sampling more than 80

for i in range(l, total sampling) :
pid.update (feedback)
output = pid.output
if pid.SetPoint > O0:
feedback += (output -

if 20 < 1 < 60:
pid.SetPoint

if 60 <= i < 80:
pid.SetPoint

if 1 >= 80:
pid.SetPoint

time.sleep(0.02)

feedback list.append (feedback)
setpoint list.append(pid.SetPoint)

time list.append (i)

Making Your IoT Project Smart

The last step is to generate a report and is saved to a file called result.png:

time sm = np.array(time list)
time smooth = np.linspace(time sm.min(), time sm.max(), 300)
feedback smooth = spline(time list, feedback list, time smooth)

figl = plt.gcf()
figl.subplots_adjust (bottom=0.15)

plt.plot (time smooth, feedback smooth, color='red')
plt.plot (time list, setpoint list, color='blue')

plt.x1lim((0, total sampling))

plt.ylim((min(feedback list) - 0.5, max(feedback list) + 0.5))
plt.xlabel ('time (s) ')

plt.ylabel ('PID (PV) ')

plt.title ('TEST PID')

plt.grid(True)
print ("saving...")
figl.savefig('result.png', dpi=100)

Controlling room temperature using PID
controller

Now we can change our PID controller simulation using the real application.
We use DHT-22 to check a room temperature. The output of measurement is
used as feedback input for the PID controller.

If the PID output positive value, then we turn on heater. Otherwise, we activate
cooler machine. It may not good approach but this good point to show how PID
controller work.

We attach DHT-22 to GPIO23 (BCM). Let's write the following program:

import matplotlib
matplotlib.use ('Agg')

import PID

import Adafruit DHT

import time

import matplotlib.pyplot as plt
import numpy as np

[48]

Chapter 1

from scipy.interpolate import spline
sensor = Adafruit DHT.DHT22

DHT22 pin on Raspberry Pi
pin = 23

U +H ™
1
o R R

.001
PID.PID(P, I, D)

o]
-
[oN)

I

pid.SetPoint = 0.0
pid.setSampleTime (0.25) # a second

total sampling = 100
sampling i = 0
measurement = 0
feedback = 0

feedback list = []
time list = []
setpoint list = []

print ('PID controller is running..')
try:
while 1:
pid.update (feedback)
output = pid.output

humidity, temperature = Adafruit DHT.read retry(sensor, pin)

if humidity is not None and temperature is not None:

if pid.SetPoint > O0:

feedback += temperature + output

print ('i={0} desired.temp={1:0.1£}*C temp={2:0.1£f}*C pid.

out={3:0.1f} feedback={4:0.1f}"'

.format (sampling i, pid.SetPoint,

output, feedback))
if output > 0:

print ('turn on heater')

elif output < 0:

print ('turn on cooler')

temperature,

[49]

Making Your IoT Project Smart

if 20 < sampling i < 60:
pid.SetPoint = 28 # celsius

if 60 <= sampling i < 80:
pid.SetPoint = 25 # celsius

if sampling i >= 80:
pid.SetPoint = 20 # celsius

time.sleep(0.5)
sampling i += 1

feedback list.append (feedback)
setpoint list.append(pid.SetPoint)
time list.append(sampling i)

if sampling i >= total sampling:
break

except KeyboardInterrupt:
print ("exit")

print ("pid controller done.")

print ("generating a report...")

time sm = np.array(time list)

time smooth = np.linspace(time sm.min(), time sm.max(), 300)
feedback smooth = spline(time list, feedback list, time smooth)

figl = plt.gcf()
figl.subplots adjust (bottom=0.15, left=0.1)

plt.plot (time smooth, feedback smooth, color='red')
plt.plot (time list, setpoint list, color='blue')
plt.x1im((0, total sampling))

plt.ylim((min(feedback list) - 0.5, max(feedback list) + 0.5))
plt.xlabel ('time (s) ')

[50]

Chapter 1

plt.ylabel ('PID

plt.grid(True)

(PV) ")
plt.title('Temperature PID Controller')

figl.savefig('pid temperature.png', dpi=100)

print ("finish")

Save this program to a file called cho1_pid.py. Now you can this program:

$ sudo python chOl pid.py

After executing the program, you should obtain a file called pid_temperature.png.

A sample output of this file can be seen in the following figure:

PID (PV)

. Temperature PID Controller

80 - -
60 - -
40 - A 3
p——
| S AN S—
20 ——
0 e T T T -
20 40 60 80 100

time (s)

[51]

Making Your IoT Project Smart

If I don't take any action either turning on a cooler or turning on a heater, I obtain a
result, shown in the following figure:

. . Temperature PID Controller
80 - -
60 - -
=
o
)
2 40 A -
“)
1 S
20 - |
0 T |d' T T T -
20 40 60 80 100
time (s)

How does it work?

Generally speaking, this program combines our two topics: reading current
temperature through DHT-22 and implementing a PID controller. After measuring
the temperature, we send this value to the PID controller program. The output of
PID will take a certain action. In this case, it will turn on cooler and heater machines.

[52]

Chapter 1

Summary

In this chapter, we have reviewed some basic statistics and explored various Python
libraries related to statistics and data science. We also learned about several IoT
device platforms and how to sense and actuate.

For the last topic, we deployed a PID controller as a study sample how to integrate
a controller system on an IoT project. In the following chapter, we will learn how to
build a decision system for our IoT project.

References

The following is a list of recommended books from which you can learn more about
the topics in this chapter:

1. Richard D. De Veaux, Paul F. Velleman, and David E. Bock, Stats Data and
Models, 4th Edition, 2015, Pearson Publishing.

2. Sheldon M. Ross, Introductory Statistics, 3rd Edition, Academic Press, 2010.

[53]

